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THE-FLOW OF LIQUID DOWN AN INCLINED PLANE AT HIGH REYNOLDS NUMBERS* 

A.A. MAKHMUDOV and E.D. TERENT'YEV 

The stability of the flow of a layer of incompressible liquid with a free 

surface down an inclined plane under the force of gravity is investigated 

for the case of large Reynolds and Froude numbers. The amplitudes of the 
perturbations which lead to a non-linear problem are found. Problems 
with initial data are formulated, as well as the boundary value problems 
with conditions on a moving wall. It is shown that four characteristic 

zones appear in the field of flow in a transverse direction, changing 
successively from one to the next. It is noted that the proposed scheme 
enables one to study detached flows with recirculation zones. The scheme 
constructed here resembles in many bays the pattern of flow past a plate 

on which a boundary layer is developed with selfinduced pressure /l-4/. 

1. Let a layer of incompressible viscous liquid flow down an inclined plane, making an 
angle 8 with the horizontal, under the force of gravity directed vertically downwards. We 
shall assume that the unperturbed motion is steady-state motion, with velocity parallel to 
the inclined plane. We shall choose, as dimensional quantities, the parameters of the 
unperturbed motion: the velocity of the free boundary U,, the height of the liquid layer ff, 
and the density of the liquid pO. Using them we introduce dimensionless dependent and inde- 
pendent variables. We shall use a Cartesian system of coordinates with the x' axis directed 

*Prikl.Matem.Mekhan.,52,4,601-609,1988 
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along the inclined plane and y' axis directed into the liquid, and we shall measure the y' 
coordinate from the free surface. The Navier-Stokes equations will be used as the basic 
equations, and the passage to dimensionless form described here will lead to two parameters, 
namely the Reynolds number R =“l,v,R,fV,,, where v. 
and the Froude number F = U,fI/H,go 

is the coefficient of kinematic viscosity 
where g, is the acceleration due to gravity. 

We specify the conditions of adhesion on the inclined plane for Y' = 1 

m= %0* v = V, ff.Q 
where u and v are the components of the velocity vector along the xf and y' axes, and u, and 
VW are the components of velocity of the free surface. Although the major part of the 
inclined plane is stationary and impermeable and U, = vu, = 0 on it, nevertheless a small part 
of it may be occupied by a vibrator and we may have there suction or injection, in which case 

r&Z -I- %J=+ 0. 
Let us specify, on the perturbed free surface Y' =q, the equality of the normal and 

tangential stresses, which can be written, for the approximations discussed below, in the 
form 

and the kinematic condition 

In formulas (1.2) and (1.3) t' is the time , p is the pressure and 00 is the dimensional 
surface tension. The dimensionless parameters R and ST can be connected with each other 
using the angle of inclination 6 and a new dimensionless parameter y which can be defined 
in terms of the dimensional parameters of the liquid only 

ST = 4~3-+R+~ sin-'M3, y = (lo (pog0~;18)-l (1.4) 

Within the approximations discussed below R+oo, therefore, according to (1.4), ST+O, 
and we can neglect the effect of the surface tension. The term Sr however will be left in 
(1.2) in order to deal with the case Sr-1 as R 
analysis of the problem. 

-00 and carry out a formal parametric 
In this case the quantity y must be of the order of R%sin'/~B. In 

the case of, for example, mercury (Hg), we have ST = 'I,, .when El = 10" and R = 820. 
The basic unperturbed flow governed by the Navier-Stokes equations, homogeneous conditions 

in the plane (1.1) and conditions on the free surface, can be described as follows: 

u, = u (y') = 1 - y'2, v, = 0 (1.5) 
ps = R-P (Y’) = F-2y’ cos tl = ‘12R-‘y’ ctg 0 

rl = 0, U, = V&,ag, sin eh, 

The stability of the solution of (1.5) in its linear approximation was discussed in /5, 
6/. Further analysis of the flows close to the unperturbed flow is based on the non-linear 
theory. Thus soliton solutions were constructed and three-dimensional effects were taken into 
account in /7-lo/'. All these papers dealt with the unperturbed flows at small Reynolds and 
Froude numbers. The main purpose of the present paper is to study the solutions of the 
Navier-Stokes equations satisfying conditions (l.l)-(1.31, with the longitudinal velocity 
representing almost everywhere the perturbation U (y') as R -+ 00 and 0 PO. The solutions 
satisfy the additional requirement that, when their amplitudes tend to zero, which ensures 
the global linearization of the perturbations in the longitudinal velocity relative to CJ (Y') 
over the whole region, the problem with homogeneou!z conditions (1.11, will have a solution 
describing neutral oscillations. From the latter it follows that the relation connecting k 
with 0 will represent, in the case of neutral oscillations, the asymptotic forms, as R--too, 
of one of the neutral stability curves for the corresponding problem for the Orr-Sommerfeld 
equation. 

Let us carry out an asymptotic analysis of the problem, as R-+00, which will be 
analogous in many respects to that carried out in /l-3/ when investigating stationary detached 
flows which was then extended to the non-stationary solutions in /4/. We shall bring into 
our discussion the main region with transverse dimension y' = O(i), occupying almost the whole 
flow except narrow sections adjacent to the surface of the inclined plane and the free surface. 
We shall assume that the characteristic longitudinal dimension & in the main region and 
in all other regions introduced below, is the same. We shall also assume that it depends on 
the value of R, since Ax’--Rax where a, is a number. The characteristic dimensionless time 
will also be assumed to be the same and proportional to Rat in all regions. The relationship 
connecting the velocity and pressure perturbations with the Reynolds number will however be 
different in different regions. 
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Let us write the expansions in the main region in the form (numbering the regions con- 

secutively from the free surface downwards, we shall denote the functions sought and the 
transverse coordinate in the main region by the subscript 3, and leave the time and longi- 
tudinal coordinate, which remain the same in all regions, without any indices) 

t' z Raft r' :- R""z 1 Y’=Ys (1.6) 

u=U(Y3)+Rauu31+..., u=Ra*‘vB1-i-... 

p = R-‘P (~3) + R%,, 

Here and henceforth the quantities with indices lm will be functions of &X,Y,(l =I,& 
3,4;m=l,2) unless otherwise indicated. We can also impose the following constraints 

based on the physical considerations a,,a,,a, accompanying the Reynolds numbers in (1.6) 

a, < 0, a, < 0, a,, < 0 (1.7) 

Experiments show that when the Reynolds number increases, the long-wavelength, low- 

frequency perturbations become unstable. Therefore we shall assume that 

a,>% a,>0 (I.81 

Let us substitute the expansions (1.6) into the system of Navier-Stokes equations. 

Retaining both terms in the equation of continuity, we obtain the following serial equality 

and equation 

a, -a, = a,, aU,,iax + av3,/ay3 = 0 (1.9) 
In analysing the projections of the equations of conservation of momentum, we shall make the 

following two assumptions: a,>at and a,<l. The first assumption is equivalent to the 

requirement that the perturbation with the subscript 31 should be quasistationary, and the 

second assumption excludes the influence of viscous stresses on the formation of perturbations. 

As a result we obtain a single equation (which is identical with (1.9)) and two equations 

a, -a, = a, (1.10) 

The system of three Eqs.tl.9) and (1.10) can be integrated analytically,andits solution, 
satisfying the condition of decay as x--f -00, has the form 

(1.11) 

Here A,, and P,, are arbitrary functions of t, x, and they approach zero as x3-- 

00. 

2. The solution (1.11) was obtained from a system which did not contain viscous stresses, 

therefore it cannot be used in the problem with homogeneous conditions to help to satisfy the 

conditions of adhesion. Further, when Y,-+l, the asymptotic expansion in the function u 

is violated since the principal term u (YJ --t 0 and uQ1 + 0. This forces us to introduce a 

new boundary region in which the solution must, on the one hand, satisfy the conditions of 

adhesion at the wall (1.1) and reduce, on the other hand, tothe solution in the main region. 

Let us write the function u from the main region 3, as Y,-+l, in the form 

u = 2 (1 - ya) - 2R’+‘A,, (t, 5) + . . . (2.1) 

Comparing the orders of magnitude of the first and second term in (2.1) we can say that 

the asmyptotic expansion in powers of R becomes invalid when 3 - y,-Rau. Using this, we 
introduce the characteristic transverse scale in the new region, and a new transverse variable 

y, = 1 - RaUy, (2.2) 

The preliminary stage of matching at the level of exponents enables us to write the 
asymptotic expansions in the region adjacent to the wall, in the form 

u=R%L~~+ . . . . v=R=~+~w~~+... (2.3) 

p = R-‘P (ys) + R”~P,~ + . . . 

The complete matching at the level of the functions, leads to the following limiting 

conditions as y,+ 00: 

upI - 2y, - 2A,1+ . . ., vI1 ---f - 2y, 3 + . . . (2.4) 
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Let us make an assumption about the nature of the flow in the region next to the wall. 
First we shall assume that the flow is non-stationary, i.e. in addition to convective terms 
we shall retain the term containing the time derivative. We shall also assume that the flow 
is formed under the action of pressure forces and a tangential viscous stress. The last con- 
dition is necessary from the mathematical point of view, as it enables us to retain the second 
derivative in y, of ull in the equation of conservation of momentum, which in turn enables us 
to satisfy the conditions of adhesion. Substituting now the expansions (2.2) and (2.3) into 
the system of Navier-Stokes equations, we obtain three serial relations and a system of three 
equations 

a, -at = 2a, - a,, 2% - a, = ap - a, (2.5) 
2a, -a, = -a,- 1 

(2.6) 

Combining the series relations (1.7), (1.8) and (2.5) and solving the resulting system, 
we obtain 

a, = V,, at = =I,, a, = -=I,, a, = -=I,, ap = --‘I, (2.7) 

Relations (2.7) imply that the exponents obtained satisfy the necessary physicalrequire- 
ments (1.7) and (1.8). 

Eqs.(2.6) represent a well-known Prandtl system for an incompressible, non-stationary 
boundary layer. In addition to the limiting conditions (2.4), its solution must obey the 
conditions at the rigid wall, i.e. conditions (1.1) written in terms of the region adjacent to 
the wall 

41 (t* 59 Y&l) = u,,,(t, 4, V4L u, 5, y4,) = v4,lo (t, 4 (2.8) 

where y,, = ypul(tl x) is the equation of the surface of the rigid wall, as well as the initial 
conditions with respect to time 

$1 (0, r* Y4) = u410 (2, Y4) 42.9) 

In a classical formulation of the problem for a boundary layer, the pressure p41 is 
assumed to be a given function. In the formulation given here, on the other hand, in /l-4/, 
the pressure must be determined in the course of solving the problem. It is for this reason 
that, unlike in the classical formulation, we have here the limiting conditions (2.4) although 
only the first and third of these conditions will be independent. As regards the second con- 
dition, it follows from the first condition and the equation of continuity. 

We find however, that the problem for region 4 adjacent to the wall is not closed, since 
we have two arbitrary functions PII, A,, in the,limiting condition (2.4). An analogous 
situation arises when Poiseuille flow in a plane channel /11/ is analysed. In order to 
establish the relation between J's, and A,,, we must consider the regions lying above the 
main region and adjacent to the free surface. 

3. Having found in Sect.2 the exponents of the Reynolds number (2.7), we shall introduce 
for convenience a small parameter e = I$-'17 are express in terms of its powers the orders of 
the functions sought and of the independent variables. 

Let us take into account in the unknown functions in the main region (1.6), the following 
terms of the expansions: 

u=v(y,)+e2u,,+E~Ug*+..., v=Eav,,+E6vg*+... 

P = E'P (Y,) + @Pal + E'P,, + . . . 

(3.1) 

The powers of 8 preceding the functions with the subscript 32 are chosen so that the 
system of equations governing these function will be inhomogeneous. The complete solutions 
for the re-introduced functions are very bulky, and therefore we shall onlygivetheirasymptotic 
expressions as Y, + 0 

u~~=-(P~~+ Ad)-yy,(2A,,+ +-2 s’ +dt,)+ . . . 
-cc 

GZ 
v.¶s = - 7 + Y, 

a (pBl~ASl*) + . 

(3.2) 

psa = P,, - y, a’As2 awl 
(-ali--X&... 
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where A,, = A,, (t, x), P,, = P,,(t, cr) are arbitrary functions. 
Using formulas (1.4), (1.9) ana (X.2), we shall write the asmptotic expansions of the 

functions in the main region (3.1) as Y,+O, as follows: 

u.= 1 -y,2 :m 2?y,A,, - E' (P,, + Aa13)-j . (3.3) 

J&I aA,, c=-EFS~+~E3Y3a~_E6~,~... 

p = E’P,, _i- E4Y, $$ + E~P,, -+ . . 

Although it is possible to satisfy the conditions at the free surface (1.2), (1.3) using 
(3.3), this will lead instantly to the corollary q-z?, i.e. conditions will hold for y3 
such that the last three terms of the function u will be of the same order. We shall satisfy 
conditions (1.2) and (1.3) more accurately using the method of matching the asymptotic expan- 
sions. With this in mind we introduce a new region 2 with characteristic transverse dimension 

E2, and choose the 'dependence of the functions sought on E so as to ensure matching at the 
level of the exponents with (3.3) 

U=1+E4U,,$-...d U=E3L’21+~.. 

p = E4pzl + . . ., q = E2r)*1 (t, x) + . S ., y, = EZY, 

(3.4) 

Complete matching as Y, -+ 00 at the level of the functions, yields 

u21- - Y2 a - 2y,-4,, - Asr" - J',r, 
u91 

v21- - ar 7 p21+ PSI 

Let us substitute the expansions (3.4) into the system of Navier-Stokes equations. We 
obtain 

The solution of system (3.6) satisfying condition (3.5) is easily obtained 

%I = - Y, a - &/,A,1 - A,,’ - P,,, a431 
l&=--$y 9 Pa1 = PSI 

(3.6) 

(3.7) 

and it is fully identical with its limiting expression (3.5). Thus the introduction of a new 
region 2 did not yield a new result. It was, however, necessary to carry out an analysis 
in this region, due to the differences in the systems of Eqs.(l.9), (1.10) and (3.6). 

Using (3.7) and satisfying conditions (1.2) and (1.3) we obtain 

rlzr = --A,,, P,, = --S~L~~A~J~X~ 

The last equation in (3.8), which defines the relations connecting Aa, with 
provides the closure of the problem for region 4 adjacent to the wall. 

4. The system of Eqs.(3.6) contains no second derivatives in Y,. Therefore we 
satisfy the conditions at the surface and simultaneously establish a relation between 

(3.8) 

P a17 

could 

p,, 
and As1 only because condition (1.3) was found to follow, within the approximation used, 
from the first condition of (1.2) and the analytical form of solution (3.7). In order to 
retain the second derivative in the defining equations, we shall introduce a new region 1 and 
approach the free surface even more closely. Let us write the expansions in the new region 
in greater detail 

u=lfe%J,,+e~~l,+..., v=e%,,+e%,+... 

p=e4pl,+e6p,,+..., y= -GA,, + t+y,, q = --eaA,, + 

&*ql, + e%s + 1 * . 

(4.1) 

Substituting expansions (4.1) into the Navier-Stokes equations, we arrive at the system 

Its solution, which satisfies the limiting conditions 

%1 + --p,,> Ull + --a&lax, p11 * PSI (4.3) 

as Y1 -+ 00 and the conditions at the free surface, is unique and is the same as these limiting 
conditions. 

Although a second derivative in Y, appears in Eqs.(4.2), the limiting conditions and 
conditions at the free surface prevent us from obtaining a solution different fromthelimiting 
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solution (4.3). 
We obtain the following inhomogeneous system for the functions with the subscript 12: 

avlrlay, = 0, ap,,lay, = 0 (4.4) 

Complete formulation of the problem for system (4.4) is possible only after constructing 
the higher-order terms in expansions (3.4). Without carrying out bulky derivations, we shall 
write out the most important result qr2 = 0. 

An analysis carried out for the functions in higher approximations, makes it possible to 
determine the function nls and to find the relation connecting the functions A,, and PI, 
introduced in (3.2) 

The relation connecting Asa and P,, enables us to formulate the problem for region 4 
in the next higher approximation. 

This shows that introducing a new region 1 leads to equations whose order corresponds to 
the number of conditions at the free surface. 

5. The analysis carried out above enabled us to study the special features of one of 
the possible forms of asymptotic solutions when R -+ co. The flow in transverse direction was 
found to be divided into four distinct regions. In the first three regions we have essentially 
succeeded in constructing the solution in explicit form, and this was mainly possible because 
the defining equations were linear. In the lower most region 4 however, the system of defining 
EqS.(2.6) was found to be non-linear, and its solution had therefore to be obtainednumerically. 
The conditions of matching (2.4) together with the second equation of (3.8) reflecting the 
influence of the free surface, enabled us to close the problem for system (2.6) and to consider 
the solution for region 4 only. The solution of this problem gave the function A,,, and 
through it the exact form of solutions for all upper regions. 

Two characteristic groups of problems for system (2.6) should be singled out. The first 
group will contain the problems in which the initial conditions (2.9) and t = 0 and conditions 
at the wall (2.8) at t> 0 are given. Choosing various combinations of the functions %1,* 
UIE, Q0, we can solve physical problems which have straightforward analogues with the problems 
of a boundary layer with selfinduced pressure on a flat plate. Examples of such problems 
include the problems of injection or suction, the development of vortex formations, and the 
harmonic vibrator and of its starting /12/. In all problems of the first group, condition 
(3.8) holds for all 5, and no forcing conditions are specified at the surface of separation, 
i.e. at the free surface. 

The second group will include the problems in which perturbing forces are applied to the 
surface of separation y' = n. For example, in /6/ an external pressure was applied to part 
of this surface which was no longer free. In such problems we must relinquish the second 
condition of (1.2) on this part of the surface, and this leads to relinquishing the relation 
(3.13) and replacing it by 

p,,=-sST~+ ps 

where ps 0, s) is the external pressure. 
Let us turn our attention to region 4 and make an additional simplifying assumption which 

will enable us to linearize the problem with respect to the unperturbed flow. Let the func- 
tions with the subscript 41 have the form 

U 41 = 2y, + tiu,,’ + . . ., VI, = 6v,,’ + . . . 
P,,=SP,l’f...r 6-ei 

.(5.1) 

The system for the functions with a prime follows from (2.6) and (5.1), and has the form 

au,,‘laz - av,,‘lay, = 0, ap,,‘lay, = 0 (5.2) 

qp _t 2y, dud T_2v,;=-$++q$ 

The limiting conditions (2.4) and (3.8) yield 

PIr' = '/a (ST - */r1) (asU~r'/as')V,_ 

As we said before, the boundary conditions at the surface (2.8) and 
(2.9) enable us to consider various physical problems. We will dwell on 
of natural oscillations, putting 

(5.3) 

initial conditions 
the simplest problem 
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u ~~ 41w - 0, L’41w = 0 (5.4) 

Following the methods of the theory of stability, we shall seek the solution of problem 
(5.2)-(5.4) in the form 

ull' = -eih’x’zotdf (yJldy,, vgl’ = eih‘S+‘Olikf (y4) (5.5) 

&r' = &+iot 

Substituting (5.5) into system (5.2) we obtain an equation /4/ which can be reduced, 
after differentiating with respect to y, and introducing a new independent variable 2= 
-(3ik)“*y, _t 3io (3ik)W2, to the Airy equation for the function d2fldza. 

The solution of the last equation satisfyins the condition that dfldz has a limit as 

Y4-fWf has the following form for 'l,n > ar, k 5 -31,n : 

d2fldzZ = B Ai (z) 
where Ai is the Airy function. Satisfying the conditions 
we find that the constant B will differ from zero only in the 
and the frequency o are connected by the following relation: 

dAi(P) m 
dz [S 

Ai(z)dz -I 
I 

=_C-$(+ ik,)” 
$2 

at the point y, = 0, as yd+oo 
case when the wave number k 

(5.6) 

51 = io, (1/2ikl)-l$ k = A,k,, o = B,o, 

A,, = 15-‘/,6-V,/ ST _ S/,, j-V/‘, B, = (~/.JliAo’/a 

The plus sign should be taken when ST <'/r~ and the minus sign when ST >z/rs. Eq.(5.6) 
with plus sign connects the wave number with the frequency of natural oscillations in plane 
Poiseuille flow whose behaviour has been studied in detail /ll/. Using the results of /ll/ 
we can conclude that when the value of k#O is fixed, Eq.(5.6) has a denumerable set of 
roots al,,, (k). When k is varied continuously, the roots ~~.~(k) form a denumerable set of 
trajectories. If we choose k so that it varies along the positive part of the real axis, 
then all roots ~r,~ (k), beginning with the second root, will lie in the second quadrant of 
the k-plane. Only the first root or.1 (k) will move from the second quadrant into the third, 
intersecting the real axis at the point wi,r (k) = co* = -4.981 with k, ~6.385. The values of 
k, and o* will determine the neutral oscillations, the perturbations will decay for k <k, 
with time, and for k>k, they will increase exponentially in proportion to exp(--t Im wr,r(k)). 
Using the transformations (1.6) with parameters (2.7) and (5.6), we can write the asymptotic 
expression for the neutral stability curve 

k,, = 1.549~~WH,-’ (“I,, - ST)_J/‘, 81,s < ST 

0 *,, = 0.2119R’ll~ (go/H&‘/~ sin'@ (8/16 - ST)-'/' 

Analysing the roots of Eq.(5.6) in the case when or varies along the real axis /ll/, 
we can show the root or = 0, k, = -5.728, specifying the asymptotic solution which passes, 
at the non-linear stage, into a stationary separation. 

The figure shows the relationship ~r,~(k) for the case when 

Since not a single trajectory intersects the real axis 

asymptotic forms of the stationary separation. 
-4 .-2 0 2 Y Clearly, when R increases, according to (1.4), Sr will 

decrease and in the limit, as R-m, the maintenance of the 
inequality (5.7) should rather be treated as a formal parametric 

analysis of the problem. It is interesting to note that in the limit, as STd_, the 
boundary conditions at the free surface are identical with the conditions on the central 
streamline used to detect the antisymmetric perturbations in plane Poiseuille flow. Such 
perturbations will always be stable /13/. 

The use of the numerical solution of the Orr-Sommerfeld equation in the studyofstability 
of the problem in question shows that increasing the parameter S,, from some specified value 
stabilizes the shear flow and brings the sepctrum of the perturbed problem closer to the 
antisymmetric part of the spectrum of perturbed Poiseuille* (*Belikov V.V., Epikhin V.E. and 
Fil'yand L.V., Study of the stability of flows with a surface of separation (capillary jets, 
liquid layers). Report of NIImekhaniki MGU, 2450, 1980.) flow. The asymptotic analysis 
carried out shows, that an analogous dependence on the parameter S, is also observed in the 
limiting perturbed flow as R-co. 
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PROBLEMS OF THE INTERACTION OF A BLUNT BODY WITH AN ACOUSTIC MEDIUM* 

F.M. BORODICH 

The initial (supersonic) Stage of the interaction of a blunt body 
(penetration and impact) with an acoustic medium (a compressible fluid) 
is examined in a laminar formulation. It is assumed that 
the boundary of the domain of interaction of the body with a medium moves 
at a velocity exceeding the velocity of sound in the medium. Explicit 
formulas are derived for the velocity of the particles of the medium and 
the pressure at each point of the interaction domain boundary. It is 
shown that the general solution of the linearized problem for the super- 
sonic stage of blunt body penetration, given by an explicit formula /l-3/ 
in the form of a double integral, can be converted in such a manner as to 
reduce the formula to a single integral for an arbitrary body penetrating 
the fluid at an arbitrary velocity. Earlier only problems of the pen- 
etration of bodies of revolution bounded by second-order surfaces (cone 
/3, 4/, paraboloid /4, 5/, ellipsoid and hyperboloid /4/j at a constant 
velocity were investigated analytically using such a reduction. An exact 
expression is obtained for the law of motion on the inertia of a body of 
arbitrary shape after its contact with the fluid. 
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